Complexity of simplicial homology and independence complexes of chordal graphs
نویسندگان
چکیده
We prove the NP-hardness of computing homology groups of simplicial complexes when the size of the input complex is measured by the number of maximal faces or the number of minimal non-faces. The latter case implies NP-hardness of the homology problem for clique and independence complexes of graphs. Our approach is based on the observation that the homology of an independence complex of a chordal graph can be described using what we call strong induced matchings in the graph (also known as cross–cycles). We show that finding such a matching of a specified size in a chordal graph is NP-hard. We further study the computational complexity of finding any cross–cycle in arbitrary and chordal graphs.
منابع مشابه
Vertex Decomposable Simplicial Complexes Associated to Path Graphs
Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...
متن کاملDirac’s Theorem on Simplicial Matroids
We introduce the notion of k-hyperclique complexes, i.e., the largest simplicial complexes on the set [n] with a fixed k-skeleton. These simplicial complexes are a higherdimensional analogue of clique (or flag) complexes (case k = 2) and they are a rich new class of simplicial complexes. We show that Dirac’s theorem on chordal graphs has a higher-dimensional analogue in which graphs and clique ...
متن کاملDirac's theorem on chordal graphs and Alexander duality
By using Alexander duality on simplicial complexes we give a new and algebraic proof of Dirac’s theorem on chordal graphs.
متن کاملNew methods for constructing shellable simplicial complexes
A clutter $mathcal{C}$ with vertex set $[n]$ is an antichain of subsets of $[n]$, called circuits, covering all vertices. The clutter is $d$-uniform if all of its circuits have the same cardinality $d$. If $mathbb{K}$ is a field, then there is a one-to-one correspondence between clutters on $V$ and square-free monomial ideals in $mathbb{K}[x_1,ldots,x_n]$ as follows: To each clutter $mathcal{C}...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comput. Geom.
دوره 57 شماره
صفحات -
تاریخ انتشار 2016